2011.3.2 高等研究院・インテックセンター成果報告会

極限を目指した 新しい半導体デバイスの実現

京都大学 工学研究科 電子工学専攻 木本 恒暢、須田 淳

究極の電子デバイスを目指して 木本 恒暢、須田 淳

- 10,000 Vの電圧に耐える半導体デバイス
- 500℃の高温でも動作する半導体デバイス
- ・超高周波、高電力でも動作する半導体デバイス
- ・消費電力が限りなくゼロの半導体デバイス

SiCパワーデバイスの特徴 SiC結晶成長と物性制御 SiCパワーデバイスの作製 まとめ

パワーデバイス

<u>パワーデバイス</u>

DC→AC、AC→DC、DC→DC(電圧変換)、AC→AC(周波数変換)などの電力変換を行う。 市場:1.0兆円(2001) → 1.6兆円(2008) → 4兆円(2030) → 10兆円(2050)

SiCパワーデバイスの特徴

冷却装置簡素化、超小型変換システム

1. SiCパワーデバイスの特徴 2. SiC結晶成長と物性制御 3. SiCパワーデバイスの作製 4. まとめ

超高耐圧(> 10 kV) SiCデバイス

6.6 kV 電力系統 → <u>13~20 kV 耐圧</u>のスイッチ/ダイオード

20 kV 耐圧を実現する条件(材料面)

パワー デバイスの 定格電圧	SiC		Si		
	膜厚 (μm)	ドナー密度 (cm ⁻³)	膜厚 H (μm)	[×] ナー密度 (cm⁻³)	
1.2 kV	11	1×10 ¹⁶	130	1×10 ¹⁴	
2.5 kV	20	5×10 ¹⁵	270	5×10 ¹³	
4.5 kV	42	2×10 ¹⁵	610	2×10 ¹³	
20 kV	210	4×10 ¹⁴	2400	3×10 ¹²	
超高純度・超厚膜・ 物理的に不可能					
超高品質SiC結晶が必須					

SiCの高速エピタキシャル成長

SiCエピ成長層中の点欠陥(深い準位)

熱酸化によるSiC中の深い準位の低減

Z_{1/2}, RD_{1/2}, EH_{6/7}センター: 表面から深さ約47 μmの領域で 検出限界(1×10¹¹ cm⁻³)以下に低減

T. Hiyoshi et al., Appl. Phys. Express 2 (2009), 041101.

1. SiCパワーデバイスの特徴 2. SiC結晶成長と物性制御 3. SiCパワーデバイスの作製

4. まとめ

SiCショットキー障壁ダイオード

1993-1995, 京大

T. Kimoto et al., IEEE EDL, <u>14</u> (1993), 548. (世界初の高耐圧SiC SBD) A. Itoh et al., Proc. of ISPSD1995, p.101. (現在の世界標準構造)

T. Kimoto et al., IEEE EDL, <u>14</u> (1993), 548. (世界初の高耐圧SiC SBD) A. Itoh et al., Proc. of ISPSD1995, p.101. (現在の世界標準構造)

10 kV SiC PiNダイオードのI-V特性

T. Hiyoshi et al., IEEE Trans. Electron Devices 55 (2008), p.1841.

10 kV級SiC PiNダイオードの特性改善

SiCパワーMOSFETのオン抵抗

オン抵抗 $R_{ON} = R_S + R_{Ch} + R_{JFET} + R_{Drift} + R_{Sub}$

MOSFETチャネル移動度の向上

T. Kimoto et al. Jpn. J. Appl. Phys. 44 (2005), p.1213.

SiCパワーMOSFETの量産開始

世界初の量産化に成功 (2010年12月~) SiCトランジスタ 量産化

大容量SiCトレンチMOSFET (京大、ローム)

横型SiC RESURF MOSFET: for power IC

SiC ダブルRESURF MOSFETの特性

究極の電子デバイスを目指して

SiC: 高耐圧・低損失・高速のパワーデバイス

1. SiC結晶成長と物性制御

高速・高純度結晶成長 (不純物密度 < 1x10¹³ cm⁻³) 熱酸化による欠陥消滅 (欠陥密度 < 1x10¹¹ cm⁻³)

2. SIC MOSFET

Siの理論限界を10倍以上凌ぐ優れた性能

→ 連携企業が量産化開始(世界初)

3. PiNダイオード

超高耐圧(> 10 kV)達成 さらなる性能向上の研究に取り組み中 → ポスター